

10.4.1 About Poisson regression for count.10.3 Prepare R Environment for Analysis.9.11 Presentation of multinomial regression model.9.7.3 Model with interaction term between independent variables.9.6.5 Create new categorical variable from fbs.9.5 Estimation for Multinomial logit model.9.4 Models for multinomial outcome data.9.3 Examples of multinomial outcome variables.8.18 Presentation of logistic regression model.8.16 Prediction from binary logistic regression.8.12 Convert the log odds to odds ratio.


4.3 History and objectives of data visualisation.2.4.2 Checking availability of R package.2.3.2 Function, Argument and Parameters.1.8.3 Environment, History, Connection and Build Pane.1.8.2 Files, Plots, Packages, Help and Viewer Pane.1.7.4 TinyTeX, MiKTeX or MacTeX (for Mac OS) and TeX Live.1.7.3 Checking R and RStudio Installations.1.7 Installing R and RStudio on Your Local Machine.1.5 Point and click R Graphical User Interface (GUI).Data Analysis in Medicine and Health using R.
